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Abstract

The resourcelevels requiredfor operation
and supportof reusablelaunch vehicles are
typically defined through discreteeventsimu-
lation modeling. Minimizing these resources
constitutesan optimization probleminvolving
discrete variables argimulation.Conventional
approachedo solve such optimization prob-
lems involving integer valued decision vari-
ables are the pattern search atatisticalmeth-
ods. However, in a simulation environment
that is characterizedby searchspacesof un-

Introduction

The design of complex space systems,
suchas a launchvehicle, has historically em-
phasizedhe performanceequirementaspect.
However, declining budgetsand global com-
petition of recentyearshaspromptedthe need
for economically competitive systems, de-
signed for operability and supportability as
well?%, It hasbeenshown that Operationsand
Support(0O&S) activities accountfor 60% to
80% of life cycle costsof reusablespacesys-
tems!® Therefore,in order to minimize life

known topology and stochastic measures, thesgcle costs, it is essential sbudy and optimize

optimization approachesoften prove inade-
guate.In this paper,we have exploredthe ap-
plicability of geneticalgorithmsto the simula-
tion domain. Genetic algorithms provide a
robust search strategy that does not require
continuity and differentiability of the problem
domain. The genetic algorithm successfully
minimizedthe operationand supportactivities
for a spacevehicle, through a discrete event
simulationmodel. The practicalissuesassoci-
ated withsimulationoptimization,suchas sto-
chastic variables and constraints, were also
taken into consideration.

O&S resources in the early design phase.
The complex interaction between various
0O&S resourcexan be studiedthrough a sto-
chastic discrete event simulation model'**°
For a particular vehicland spaceprogram,the
model can be usedto predict the number of
missions flown and the mean vehicle turn-
time, for user-specifiedresources.However,
the simulation model cannot directly bsedto
minimize the O&S resources.Currently, this
problemis addressedy manuallyvarying the
input variables of the simulatioopeat atime,
until the resourceallocationseemsto be at a
minimum level. Minimizing the resources for a
launch vehicle constitutes an optimization
problem involving integer variablegshich is a



problemknown to be “hard” to solve!’ Fur-
thermore the simulation domain preventsex-
plicit problemformulationin terms of objec-
tives and constraints thus renderingcommon
mathematical programming methods inade-
quate.

Limitations of Conventional
Optimization M ethods

Gradient based optimization approaches,
arethe most common non-linearoptimization
techniqguesHowever, gradientbasedmethods
cannotbe appliedunderthe conditionsof dis-
crete variablesand discontinuities.Thus these

this direction. The genetic algorithm is foutad
be a suitable and practical optimization tech-
nigue that successfullyminimized the mainte-
nance resources.

The following sectionscontaina brief de-
scription of genetic algorithms. The specific
operation and support optimization problem
considerechereis presentedlssuesassociated
with stochasticsimulation optimization, such

as problem formulation and statistical accuracy,

arealsodiscussedFinally, we presentthe re-
sults.

The Genetic Algorithm

cannot be used for problems such as the integer Genetic Algorithms (GAs), firsintroduced

valued optimization problem outlined above.
Methodsthat can be usedto solve integer val-
ued optimization problemsinclude the pattern
searchand statisticalmethods.However,these
techniquesare not without certain drawbacks.
The pattern searchmethodsare local optima
seekingmethods:*® However, in the simula-
tion domainwherethe solution spacetypically
is of unknown topology, these methods are
susceptible to sub-optimization. Statistical
methods,such as multiple comparison,and
ranking and selection, yield the global opti-
mum. However they are computationallyin-
tensiveandtheir applicability in the simulation
domain, where estimatinga single stochastic
measureor parametermay require several
simulationruns, is severelyrestricted. There-
fore, thesetraditional approachegprove inade-
guate in the simulation domain.

Biased random searchstrategiessuch as
geneticalgorithms, have gained popularity as
shortcomingsof traditional optimization tech-
niques have becomeapparent. Genetic algo-
rithms havebeenappliedto deterministicnon-
simulation environmenwith excellentresults
However, their applicability in the computa-

tionally intensive simulation domain remains to

be explored.In this paper,we apply a genetic
algorithm, to minimize the operationand sup-
port resourceghroughsimulation,as a stepin

by Holland are stochasticsearchalgorithms
inspiredby the mechanicsof natural selection
and geneticd. GAs combine the principle of

survival of the fittest among string structures
with a structuredyet randomizedinformation
exchangeThey provide a robust alternativeto

traditional, numericamethodsof optimization.
Genetic algorithms have been proven, both

theoreticallyand empirically, to provide a ro-

bust search in complex search spdées.

The algorithm startswith a randomly se-
lectedinitial population made up of encoded
versions of candidate solutionsttee optimiza-
tion problem. Using the genetic operatorsof
mutation and crossover,subsequentgenera-
tions of strings are createdfrom the current
population.This cycle is repeateduntil a de-
sired terminationcriterion is reached(for ex-
ample, apredefinednumberof generationsre
processed).

Simple Genetic Algorithm?
(initialize population;
evaluate population;
while termination criterion not reached
( select solutions for next populations
perform crossover and mutation
evaluate population) )



EncodingMechanism

Fundamental to th&A structureis the en-
coding mechanism for representitig optimi-
zation problem's variables. The encoding
mechanismdependsupon the nature of the
problem variables.For continuous variables,
the variableis first linearly mappedto an inte-
ger definedin a specifiedrange.An integeris
encoded using a fixed number of binary bits.

FitnessFunction

Each string has a fitness function which
represents solutionto the optimization prob-
lem. To maintain uniformity over various
problemdomains,a fithess function that nor-
malizes the objective function betweenar@d 1,
is used.The normalizedvalue of the objective
functionis the fitness of the string, which the
selection mechanism uses to evaluate the
strings of the population.

SelectionSchemes

A selectionschemechoosesthe members
of the populationthat will reproduce A num-
ber of different selectionschemeshave been
proposedover the years.In a simple genetic
algorithm, astring with higherfitnessfunction
receivesa highernumberof offspring andhas
a higher chanceof surviving in subsequent
generations.

Crossover

Pairs ofstringsare pickedat randomfrom
the populatiorto be subjectedo a single-point
crossoverAssuming| is the string length, it
randomly chooses a crossoymint betweenl
andl-1. An offspringis createdby the portion
of the first stringup to the crossoverpoint and
the portion of thesecondstring after the cross-
over point. Afterchoosinga pair of stringsthe
geneticalgorithm invokes crossoveronly if a
randomly generated numbertime rangeO and
1 is greaterthanpc, the crossoverprobability.
The crossoverprobability is selectedby the
user.

Mutation

After crossover,strings are subjectedto
mutation. Mutation of a biinvolvesflipping fit,
I.e. changing a 0 to 1 and vice ver$he muta-
tion rate pyy controls the probability that a bit
will be flipped, andis setby the user.The bits
of a string are mutatedindependentlyof one
another.

Application to Oper ations and
Support Modeling

A NASA model simulating the operation
and support activities daunchvehiclesduring
conceptualdesign,is used It usesestimated
valuesfor componenteliability and maintain-
ability, to simulatethe mission, and pre- and
postflight maintenance.Given the operation
and supportesourcegcrew andfleet size)the
model predictsthe numberof missionsflown
andthe meanvehicleturn-timefor a particular
spaceprogram.Underlying processesuch as
componentand systemfailure, repair and re-
placementiimes, and maintenancedelays are
simulated.Due to the random natureof these
processes, the simulation model andbit$puts
are stochastic.

Minimization of the operationand support

resources requires the determination of the least

fleet and maintenancecrew size, that enables
meeting the target mission rate in a timely

manner.The decision variablesto be mini-

mized inthis case arerestrictedto integerval-

ues, within a certain ‘user-specified’ rangée

constraints of meeting a given mission riate

timely manner, are stochasticmature,that are
evaluatedthrough simulation. This situation
canbe formally statedas a multiple objective
optimization problem with integer variables.
The objectives to be minimized are:

(1) Minimize the number ofehiclesin the
fleet.

(2) Minimize the crew size assignedo the
power, structure,tanks, avionics, ther-



mal, auxiliary, life, mechanical and
propulsion maintenance subsystem.

The stochastic constraints are:

(1) The meanof averagedelay should not
exceed 48 hours

(2) The specifiedmissionrate of 140 mis-
sionsin five years,as denotedby the
mean missions, is met.

Since the genetic algorithm handlesa single
objective,the variousobjectives(fleet size and
nine different maintenancecrew) to be mini-
mized are combinedadditively through multi-
attribute utility theory? The additive utility
function, recommendedn the literature as a
robust approximationwhen more than four
objectivesareinvolved is used:' Expert opin-
ions fromNASA engineerson life-cycle costs

E(suc_mis), is arandomvariablerepre-

senting the expected value of the number

of missions completed successfully,
predicted by the simulation model.

Stochastic Simulation Optimization
Framewor k

In the presentexample case,the average
launch delay time anthe missionsflown con-
straints are stochasticand observedthrough
simulation. Thismeansthat eachreplicationof
the simulation has the potentialgove rise to a
varying averagelelay and successfumissions
flown. Stochasticmeasuresr constraintsre-
quire special consideration durigtimization.
Standardstatistical proceduresrecommended
in the simulation literature argsedto treatsto-
chastic responség!®*2*

Replications

were used to develop relative utilities associated One of the issuesassociatedwith a sto-

with eachobjective.The stepstakento assess
the utility function were based atandardpro-
ceduresputlinedin the literaturé®. This utility
function, representinghe fleet and manpower
cost, forms a single objective functi@rhich is
to be minimized. Symbolicallythe problemis
stated as:

Min 100*v+ cq+c,+Cg+Cy+CgtCg + C7+Cg+ Cg

subject to
E(delay) <48 hours
E(suc_miss) > 140
1 < v< 5positive integers
1< cp< 40 positive integers

where
v is the vehicles in the fleet,
Cn is the crew assignedto various
maintenance subsystems,
E(delay), is a random variable repre-
senting the expected value of theerage

chastic simulation is the numbef replications
or runs requiredin a study. This dependson

the levelof accuracydesiredfor estimatingthe

averagestochastiomeasuresThe accuracyde-

siredwas specifiedin terms of confidencein-

tervalsby NASA engineers.For the present
example, these were stated as follows:

Desired Desired
width #w conf.(1-a )
Delay +48 hours 80%
Successful | £2 missions 95%
Missions

This implies that the mean tie averagedelay
is to be estimatedwithin £2 daysof the true
mean, withan accuracyor confidenceof 80%.
Similarly, the mearsuccessfumissionsflown
are tobe estimatedwithin £2 missions,with a
95% confidence.

The numberof replicationsare computed
basedon the specifiedconfidencelevel (1-a )

launch delay time over the specified timeof the true mean being within amterval #w of

horizon, as predictedby the simulation
model, and

the estimatedmean. Representativedistribu-
tions for thetwo stochastianeasuresvere ob-



tained by runninghe simulation1000times at
a particularcase.Thesewere usedto compute
the number of replications in the standard
mannefl**% The computationyielded the fol-

lowing replication requirements:

Delay:
Successful missions:

19 replications.
18 replications.

Hence,a conservativesamplesize of 20 was
selected.

ChanceConstraints
The variability inherentin stochasticcon-

< 48 hours
140

delay

upp_lim, .06
SUC_ mISow _lim, .05 >

The confidence intervals are estimatedulsing
the Student’st distribution in the standard
manner-?

Penalty Functions

Since a genetic algorithm does not allow
for explicit constraint formulation, thebjective
function is penalizedfor constraintviolation.
The penaltyis usually selectedhrougha proc-
ess of trialand error. Too large a penalty,may

straints complicates the simulation optimizatiorpotentially neglect theriginal costor objective

problemby forming fuzzy boundariesfor the
feasible region. Thipresentsa dangerof erro-
neously accepting a solution as feasibtgle it

function. On the other hand, a small penalty,
may potentiallyignore the effectsof constraint
violation. For the currentexamplethe follow-

may have a high probability of being infeasiblejng penalty functions determinedexperimen-

and vice versa. The chanceconstrainttheory
approach has been ustedconvertthe stochas-
tic constraintsinto deterministic constraints.
Chanceconstraintspermit constraintviolation
up to a pre-specifiegrobability limit.* The de-
cision maker expressesa risk tolerance, in
terms of a permissiblprobability of constraint
violation. These were expressed as follows:

5% risk that mean of average dekxceeds
2 days.

5% risk that mean missions lag target of
140.

The above risk tolerances can be stated as:

P[E(delay) > 48 hours]
P[E(suc_mis) < 140

< 0.05

< 0.05

The chance constraints were implemented
throughstatisticalinterval estimatesfor a pre-
specifiedconfidencewherethe confidencede-
notesthe probability that the interval contains
the trueparametéef. The limits at the specified
confidence(5% risk or 95% confidence)pro-
vide deterministidooundariedor the infeasible
region.

tally, through gprocessof trial anderror, were
added to the objective function:

1000* (48 hours - delay )?

upp_lim, .05
pp_! 5

1000% (140 - suc_Mis ,,, jim. 05)
Results

The problemformulatedabovewith multi-
attribute additive function, chanceconstraints,
and penalty functions was solved by applyang
geneticalgorithm. The genetic algorithm was
run severaltimeswith different randomnum-
ber generator seeds. Thugacticeof replication
promotes genetic diversity ihe populationby
sampling the searchspace more effectively.
The algorithm was run for 20 generationsat
each replication. The algorithm parameters
were determined througlprocessof trial and
error as follows:

Population size: 50
Crossover probability: 0.9
Mutation rate: 0.2

The bestobjective function found among the
GA replicationswas 273. This representsa
23% improvementin termsof utility, overthe



previoussolution found by the ‘one-variable-
at-a-time’ optimization approathThe decision
variables at this cost or utility of 273 are:

Vehicles: 2 Total crew: 73
Maintenance Subsystem Crew
Power 6
Structure 7
Tanks 10
Avionics 6
Thermal 15
Auxiliary 7

Life 6
Mechanical 8
Propulsion 8

The stochasticconstraintsat this input combi-
nationwere satisfiedandwell within their tol-
erancelevels. The meanof averagedelay was
15.73 hours, with a 95% confidencethat the
delay does not exceed38 hours. The target
mission rate of 140 mission mfive yeartime
span was achieved with a 95¢énfidence.The
abovestochasticmeasure{meansof average
delay andmissions)were estimatedat an 80%
confidenceof beingwithin +2 days, and 95%
confidence of being withiee2 missions,of the
true means respectively.

The following figure tracksthe best objec-
tive function value over subsequeggnerations
of the geneticalgorithm. It can be seenthat
there is a gradual improvementin the cost
function from the first generationto the ninth
generation.The cost function at this point is
attributedto threevehiclesin the fleet. In the
tenthgenerationa sharpreductionin the cost
function is visible. Thizorrespondso a feasi-
ble solutionwith two vehicles(273). Thereis
no furtherimprovementn the solution as the
geneticalgorithm progressesand it is said to
have ‘converged'.

Best objective function per generation
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Conclusions

Optimization of operationand supportre-
sources viaiscreteeventsimulationmodeling
Is anintegerprogrammingproblem known to
be difficult to solve.The common approaches
to optimizing integer decision variables,such
as patternsearchand statisticalmethodsprove
inadequatein the simulation domain. In this
paper, we have examined the applicabilityaof
emerging optimization technique tioe simula-
tion environment — th@eneticalgorithm.The
geneticalgorithm successfullyminimized the
operation and support resourcesthrough a
simulation model. The solution producedin
this mannerresultedin a 23% improvement
over the previous ‘one-variable-at-a-timeap-
proach.Furthermorepy incorporatingstatisti-
cal aspectsin the optimization framework, a
confidence leveis associatedavith the solution
itself, andthe stochasticmeasuresLastly, the
applicability of the genetic algorithm in the
simulation domain has been demonstrated.
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