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     Abstract

The resource levels required for operation
and support of reusable launch vehicles are
typically defined through discrete event simu-
lation modeling. Minimizing these resources
constitutes an optimization problem involving
discrete variables and simulation. Conventional
approaches to solve such optimization prob-
lems involving integer valued decision vari-
ables are the pattern search and statistical meth-
ods. However, in a simulation environment
that is characterized by search spaces of un-
known topology and stochastic measures, these
optimization approaches often prove inade-
quate. In this paper, we have explored the ap-
plicability of genetic algorithms to the simula-
tion domain. Genetic algorithms provide a
robust search strategy that does not require
continuity and differentiability of the problem
domain. The genetic algorithm successfully
minimized the operation and support activities
for a space vehicle, through a discrete event
simulation model. The practical issues associ-
ated with simulation optimization, such as sto-
chastic variables and constraints, were also
taken into consideration.

   Introduction    

The design of complex space systems,
such as a launch vehicle, has historically em-
phasized the performance requirements aspect.
However, declining budgets and global com-
petition of recent years has prompted the need
for economically competitive systems, de-
signed for operability and supportability as
well21. It has been shown that Operations and
Support (O&S) activities account for 60% to
80% of life cycle costs of reusable space sys-
tems.7,3 Therefore, in order to minimize life
cycle costs, it is essential to study and optimize
O&S resources in the early design phase.

The complex interaction between various
O&S resources can be studied through a sto-
chastic discrete event simulation model.14,15

For a particular vehicle and space program, the
model can be used to predict the number of
missions flown and the mean vehicle turn-
time, for user-specified resources. However,
the simulation model cannot directly be used to
minimize the O&S resources. Currently, this
problem is addressed by manually varying the
input variables of the simulation, one at a time,
until the resource allocation seems to be at a
minimum level. Minimizing the resources for a
launch vehicle constitutes an optimization
problem involving integer variables, which is a
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problem known to be “hard” to solve.17 Fur-
thermore, the simulation domain prevents ex-
plicit problem formulation in terms of objec-
tives and constraints, thus rendering common
mathematical programming methods inade-
quate.

    Limitations of         C         onventional
     O         ptimization          M         ethods   

Gradient based optimization approaches,
are the most common non-linear optimization
techniques. However, gradient based methods
cannot be applied under the conditions of dis-
crete variables and discontinuities. Thus these
cannot be used for problems such as the integer
valued optimization problem outlined above.
Methods that can be used to solve integer val-
ued optimization problems include the pattern
search and statistical methods. However, these
techniques are not without certain drawbacks.
The pattern search methods are local optima
seeking methods.9,16 However, in the simula-
tion domain where the solution space typically
is of unknown topology, these methods are
susceptible to sub-optimization. Statistical
methods, such as multiple comparison, and
ranking and selection, yield the global opti-
mum. However they are computationally in-
tensive and their applicability in the simulation
domain, where estimating a single stochastic
measure or parameter may require several
simulation runs, is severely restricted.5 There-
fore, these traditional approaches prove inade-
quate in the simulation domain.

Biased random search strategies such as
genetic algorithms, have gained popularity as
shortcomings of traditional optimization tech-
niques have become apparent. Genetic algo-
rithms have been applied to deterministic non-
simulation environment with excellent results.6

However, their applicability in the computa-
tionally intensive simulation domain remains to
be explored. In this paper, we apply a genetic
algorithm, to minimize the operation and sup-
port resources through simulation, as a step in

this direction. The genetic algorithm is found to
be a suitable and practical optimization tech-
nique that successfully minimized the mainte-
nance resources.

The following sections contain a brief de-
scription of genetic algorithms. The specific
operation and support optimization problem
considered here is presented. Issues associated
with stochastic simulation optimization, such
as problem formulation and statistical accuracy,
are also discussed. Finally, we present the re-
sults.

    The Genetic Algorithm     

Genetic Algorithms (GAs), first introduced
by Holland are stochastic search algorithms
inspired by the mechanics of natural selection
and genetics8. GAs combine the principle of
survival of the fittest among string structures
with a structured yet randomized information
exchange. They provide a robust alternative to
traditional, numerical methods of optimization.
Genetic algorithms have been proven, both
theoretically and empirically, to provide a ro-
bust search in complex search spaces.8,6

The algorithm starts with a randomly se-
lected initial population made up of encoded
versions of candidate solutions to the optimiza-
tion problem. Using the genetic operators of
mutation and crossover, subsequent genera-
tions of strings are created from the current
population. This cycle is repeated until a de-
sired termination criterion is reached (for ex-
ample, a predefined number of generations are
processed).

Simple Genetic Algorithm:19

( initialize population;
 evaluate population;
 while termination criterion not reached

( select solutions for next populations
 perform crossover and mutation
 evaluate population ) )
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    Encoding         Mechanism
Fundamental to the GA structure is the en-

coding mechanism for representing the optimi-
zation problem's variables. The encoding
mechanism depends upon the nature of the
problem variables. For continuous variables,
the variable is first linearly mapped to an inte-
ger defined in a specified range. An integer is
encoded using a fixed number of binary bits.

    Fitness        Function
Each string has a fitness function which

represents a solution to the optimization prob-
lem. To maintain uniformity over various
problem domains, a fitness function that nor-
malizes the objective function between 0 and 1,
is used. The normalized value of the objective
function is the fitness of the string, which the
selection mechanism uses to evaluate the
strings of the population.

    Selection        Schemes
A selection scheme chooses the members

of the population that will reproduce. A num-
ber of different selection schemes have been
proposed over the years. In a simple genetic
algorithm, a string with higher fitness function
receives a higher number of offspring and has
a higher chance of surviving in subsequent
generations.

    Crossover
Pairs of strings are picked at random from

the population to be subjected to a single-point
crossover. Assuming l is the string length, it
randomly chooses a crossover point between 1
and l-1. An offspring is created by the portion
of the first string up to the crossover point and
the portion of the second string after the cross-
over point. After choosing a pair of strings the
genetic algorithm invokes crossover only if a
randomly generated number in the range 0 and
1 is greater than pc, the crossover probability.
The crossover probability is selected by the
user.

     Mutation
After crossover, strings are subjected to

mutation. Mutation of a bit involves flipping it,
i.e. changing a 0 to 1 and vice versa. The muta-
tion rate pm controls the probability that a bit
will be flipped, and is set by the user. The bits
of a string are mutated independently of one
another.

     Application to Operations and
    Support Modeling    

A NASA model simulating the operation
and support activities of launch vehicles during
conceptual design, is used.2 It uses estimated
values for component reliability and maintain-
ability, to simulate the mission, and pre- and
postflight maintenance. Given the operation
and support resources (crew and fleet size) the
model predicts the number of missions flown
and the mean vehicle turn-time for a particular
space program. Underlying processes such as
component and system failure, repair and re-
placement times, and maintenance delays are
simulated. Due to the random nature of these
processes, the simulation model and its outputs
are stochastic.

Minimization of the operation and support
resources requires the determination of the least
fleet and maintenance crew size, that enables
meeting the target mission rate in a timely
manner. The decision variables to be mini-
mized in this case, are restricted to integer val-
ues, within a certain ‘user-specified’ range. The
constraints of meeting a given mission rate in a
timely manner, are stochastic in nature, that are
evaluated through simulation. This situation
can be formally stated as a multiple objective
optimization problem with integer variables.
The objectives to be minimized are:

(1) Minimize the number of vehicles in the
fleet.

(2) Minimize the crew size assigned to the
power, structure, tanks, avionics, ther-
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mal, auxiliary, life, mechanical and
propulsion maintenance subsystem.

The stochastic constraints are:

(1) The mean of average delay should not
exceed 48 hours

(2) The specified mission rate of 140 mis-
sions in five years, as denoted by the
mean missions, is met.

Since the genetic algorithm handles a single
objective, the various objectives (fleet size and
nine different maintenance crew) to be mini-
mized are combined additively through multi-
attribute utility theory.22 The additive utility
function, recommended in the literature as a
robust approximation when more than four
objectives are involved is used.11 Expert opin-
ions from NASA engineers on life-cycle costs
were used to develop relative utilities associated
with each objective. The steps taken to assess
the utility function were based on standard pro-
cedures, outlined in the literature10. This utility
function, representing the fleet and manpower
cost, forms a single objective function which is
to be minimized. Symbolically the problem is
stated as:

  Min 100*v+ c1+c2+c3+c4+c5+c6 + c7+c8+ c9

subject to
E(delay) ≤ 48 hours

 E(suc_miss) ≥  140
1 ≤  v ≤  5 positive integers
1 ≤  cn ≤  40 positive integers

where
v is the vehicles in the fleet,
cn is the crew assigned to various
maintenance subsystems,
E(delay), is a random variable repre-
senting the expected value of the average
launch delay time over the specified time
horizon, as predicted by the simulation
model, and

E(suc_mis), is a random variable repre-
senting the expected value of the number
of missions completed successfully,
predicted by the simulation model.

    Stochastic Simulation Optimization
    Framework    

In the present example case, the average
launch delay time and the missions flown con-
straints are stochastic and observed through
simulation. This means that each replication of
the simulation has the potential to give rise to a
varying average delay and successful missions
flown. Stochastic measures or constraints re-
quire special consideration during optimization.
Standard statistical procedures recommended
in the simulation literature are used to treat sto-
chastic responses.13,18,12,4

    Replications
One of the issues associated with a sto-

chastic simulation is the number of replications
or runs required in a study. This depends on
the level of accuracy desired for estimating the
average stochastic measures. The accuracy de-
sired was specified in terms of confidence in-
tervals by NASA engineers. For the present
example, these were stated as follows:

Desired
width ±w

Desired
conf. (1-α )

Delay ±48 hours 80%
Successful
Missions

±2 missions 95%

This implies that the mean of the average delay
is to be estimated within ±2 days of the true
mean, with an accuracy or confidence of 80%.
Similarly, the mean successful missions flown
are to be estimated within ±2 missions, with a
95% confidence.

The number of replications are computed
based on the specified confidence level (1-α )
of the true mean being within an interval ±w of
the estimated mean. Representative distribu-
tions for the two stochastic measures were ob-
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tained by running the simulation 1000 times at
a particular case. These were used to compute
the number of replications in the standard
manner13,12: The computation yielded the fol-
lowing replication requirements:

Delay: 19 replications.
Successful missions: 18 replications.

Hence, a conservative sample size of 20 was
selected.

    Chance        Constraints
The variability inherent in stochastic con-

straints complicates the simulation optimization
problem by forming fuzzy boundaries for the
feasible region. This presents a danger of erro-
neously accepting a solution as feasible while it
may have a high probability of being infeasible,
and vice versa. The chance constraint theory
approach has been used to convert the stochas-
tic constraints into deterministic constraints.
Chance constraints permit constraint violation
up to a pre-specified probability limit.1 The de-
cision maker expresses a risk tolerance, in
terms of a permissible probability of constraint
violation. These were expressed as follows:

5% risk that mean of average delay exceeds
2 days.
5% risk that mean missions lag target of 
140.

The above risk tolerances can be stated as:

P[E(delay) > 48 hours] ≤  0.05
P[E(suc_ mis) < 140 ] ≤  0.05

The chance constraints were implemented
through statistical interval estimates for a pre-
specified confidence, where the confidence de-
notes the probability that the interval contains
the true parameter20. The limits at the specified
confidence (5% risk or 95% confidence) pro-
vide deterministic boundaries for the infeasible
region.

delay
upp_lim, .05   ≤  48 hours

suc_ mislow _lim, .05   ≥  140

The confidence intervals are estimated by using
the Student’s t distribution in the standard
manner.13

    Penalty Functions
Since a genetic algorithm does not allow

for explicit constraint formulation, the objective
function is penalized for constraint violation.
The penalty is usually selected through a proc-
ess of trial and error. Too large a penalty, may
potentially neglect the original cost or objective
function. On the other hand, a small penalty,
may potentially ignore the effects of constraint
violation. For the current example the follow-
ing penalty functions determined experimen-
tally, through a process of trial and error, were
added to the objective function:

1000*(48 hours - delay
upp_lim, .05

)2

1000*(140 - suc_mis low_lim, .05)2

     Results   

The problem formulated above with multi-
attribute additive function, chance constraints,
and penalty functions was solved by applying a
genetic algorithm. The genetic algorithm was
run several times with different random num-
ber generator seeds. This practice of replication
promotes genetic diversity in the population by
sampling the search space more effectively.
The algorithm was run for 20 generations at
each replication. The algorithm parameters
were determined through a process of trial and
error as follows:

Population size: 50
Crossover probability: 0.9
Mutation rate: 0.2

The best objective function found among the
GA replications was 273. This represents a
23% improvement in terms of utility, over the
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previous solution found by the ‘one-variable-
at-a-time’ optimization approach2. The decision
variables at this cost or utility of 273 are:

Vehicles: 2 Total crew: 73
Maintenance Subsystem Crew
Power 6
Structure 7
Tanks 10
Avionics 6
Thermal 15
Auxiliary 7
Life 6
Mechanical 8
Propulsion 8

The stochastic constraints at this input combi-
nation were satisfied and well within their tol-
erance levels. The mean of average delay was
15.73 hours, with a 95% confidence that the
delay does not exceed 38 hours. The target
mission rate of 140 mission in a five year time
span was achieved with a 95% confidence. The
above stochastic measures (means of average
delay and missions) were estimated at an 80%
confidence of being within ±2 days, and 95%
confidence of being within ±2 missions, of the
true means respectively.

The following figure tracks the best objec-
tive function value over subsequent generations
of the genetic algorithm. It can be seen that
there is a gradual improvement in the cost
function from the first generation to the ninth
generation. The cost function at this point is
attributed to three vehicles in the fleet. In the
tenth generation, a sharp reduction in the cost
function is visible. This corresponds to a feasi-
ble solution with two vehicles (273). There is
no further improvement in the solution as the
genetic algorithm progresses and it is said to
have ‘converged’.
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     Conclusions   
Optimization of operation and support re-

sources via discrete event simulation modeling
is an integer programming problem known to
be difficult to solve. The common approaches
to optimizing integer decision variables, such
as pattern search and statistical methods prove
inadequate in the simulation domain. In this
paper, we have examined the applicability of an
emerging optimization technique to the simula-
tion environment — the genetic algorithm. The
genetic algorithm successfully minimized the
operation and support resources through a
simulation model. The solution produced in
this manner resulted in a 23% improvement
over the previous ‘one-variable-at-a-time’ ap-
proach. Furthermore, by incorporating statisti-
cal aspects in the optimization framework, a
confidence level is associated with the solution
itself, and the stochastic measures. Lastly, the
applicability of the genetic algorithm in the
simulation domain has been demonstrated.
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